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Abstract A key challenge in human genetics is to understand the geographic distribution of

human genetic variation. Often genetic variation is described by showing relationships among

populations or individuals, drawing inferences over many variants. Here, we introduce an

alternative representation of genetic variation that reveals the relative abundance of different allele

frequency patterns. This approach allows viewers to easily see several features of human genetic

structure: (1) most variants are rare and geographically localized, (2) variants that are common in a

single geographic region are more likely to be shared across the globe than to be private to that

region, and (3) where two individuals differ, it is most often due to variants that are found globally,

regardless of whether the individuals are from the same region or different regions. Our variant-

centric visualization clarifies the geographic patterns of human variation and can help address

misconceptions about genetic differentiation among populations.

Introduction
Understanding human genetic variation, including its origins and its consequences, is one of the

long-standing challenges of human biology. A first step is to learn the fundamental aspects of how

human genomes vary within and between populations. For example, how often do variants have an

allele at high frequency in one narrow region of the world that is absent everywhere else? For

answering many applied questions, we need to know how many variants show any particular geo-

graphic pattern in their allele frequencies.

In order to answer such questions, one needs to measure the frequencies of many alleles around

the world without the ascertainment biases that affect genotyping arrays and other probe-based

technologies (International HapMap Consortium, 2005; Li et al., 2008). Recent whole-genome

sequencing studies (Auton et al., 2015; Mallick et al., 2016; Bergström et al., 2019; Fairley et al.,

2020) provide these data, and thus present an opportunity for new perspectives on human variation.

However, large genetic data sets present a visualization challenge: how does one show the allele

frequency patterns of millions of variants? Plotting a joint site frequency spectrum (SFS) is one

approach that efficiently summarizes allele frequencies and can be carried out for data from two or

three populations (Gutenkunst et al., 2009). For more than three populations, one must resort to

showing multiple combinations of two or three-population SFSs. This representation becomes

unwieldy to interpret for more than three populations and cannot represent information about the

joint distribution of allele frequencies across all populations. Thus, we need visualizations that intui-

tively summarize allele frequency variation across several populations.

New visualization techniques also have the potential to improve population genetics education

and research. Many commonly used analysis methods, such as principal components analysis (PCA)

or admixture analysis, do a poor job of conveying absolute levels of differentiation (McVean, 2009;

Lawson et al., 2018). Observing the genetic clustering of individuals into groups can give a mislead-

ing impression of ‘deep’ differentiation between populations, even when the signal comes from
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subtle allele frequency deviations at a large number of loci (Patterson et al., 2006; McVean, 2009;

Novembre and Peter, 2016). Related misconceptions can arise from observing how direct-to-con-

sumer genetic ancestry tests apportion ancestry to broad continental regions. One may mistakenly

surmise from the output of these methods that most human alleles must be sharply divided among

regional groups, such that each allele is common in one continental region and absent in all others.

Similarly, one might mistakenly conclude that two humans from different regions of the world differ

mainly due to alleles that are restricted to each region. Such misconceptions can impact researchers

and the broader public alike. All these misconceptions potentially can be avoided with visualizations

of population genetic data that make typical allele frequency patterns more transparent.

Here, we develop a new representation of population genetic data and apply it to the New York

Genome Center deep coverage sequencing data of the 1000 Genomes Project (1KGP) samples

(Auton et al., 2015). In essence, our approach represents a multi-population joint SFS with coarsely

binned allele frequencies. It trades precision in frequency for the ability to show several populations

on the same plot. Overall, we aimed to create a visualization that is easily understandable and useful

for pedagogy. As we will show, the visualizations reveal with relative ease many known important

features of human genetic variation and evolutionary history.

This work follows in the spirit of Rosenberg, 2011 who used an earlier dataset of microsatellite

variation to create an approachable demonstration of major features in the geographic distribution

of human genetic variation (as well as earlier related papers such as Lewontin, 1972; Mountain and

Ramakrishnan, 2005; Witherspoon et al., 2007). Our results complement several recent analyses of

single-nucleotide variants (SNVs) in whole-genome sequencing data from humans (Auton et al.,

2015; Mallick et al., 2016; Bergström et al.,

2019). We label the approach taken here a vari-

ant-centric view of human genetic variation, in

contrast to representations that focus on individ-

uals or populations and their relative levels of

similarity.

Materials and methods
To introduce the approach, we begin with con-

sidering 100 randomly chosen SNVs sampled

from Chromosome 22 of the 1KGP high coverage

data (Box 1, Fairley et al., 2020). Figure 1

shows the allele frequency of each variant (rows)

in each of the 26 populations of the 1KGP (col-

umns, see Supplementary file 1 for labels). As a

convention throughout this paper, we use darker

shades of blue to represent higher allele fre-

quency, and we keep track of the globally minor

allele, that is, the rarer (<50% frequency) allele

within the full sample. The figure shows that var-

iants seem to fall into a few major descriptive cat-

egories: variants with alleles that are localized to

single populations and rare within them, and var-

iants with alleles that are found across all 26 pop-

ulations and are common within them.

To investigate whether such patterns hold

genome-wide, we devise a scheme that allows us

to represent the >90 million SNVs in the

genome-wide data (Figure 2). First, we follow

the 1KGP study in grouping the samples from the

26 populations into five geographical ancestry

groups: African (AFR), European (EUR), South

Asian (SAS), East Asian (EAS), and Admixed

American (AMR) (Figure 2A, Box 1). For clarity,
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Figure 1. Allele frequencies at 100 randomly chosen

variants from Chromosome 22. Frequencies of the

globally minor allele are shown across 26 populations

(columns) from the 1KGP for 100 randomly chosen

variants from Chromosome 22. Note that the allele

frequency bin spacing is nonlinear to capture variation

at low as well as high frequencies. Populations are

ordered by broad geographic region (horizontal labels,

see Figure 2A for legend). Definitions of abbreviations

for the 26 1KGP populations are given in

Supplementary file 1.
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we modify the original 1KGP groupings slightly for this project (by including several samples from

the Americas in the AMR grouping, see Box 1). While human population structure can be dissected

at much finer scales than these groups (e.g. Leslie et al., 2015; Novembre and Peter, 2016), the

regional groupings we use are a practical and instructive starting point—as we will show, several key

Box 1. Dataset descriptions and groupings.

We use bi-allelic single-nucleotide variants from the New York Genome Center high-coverage

sequencing of the 1000 Genomes Project (1KGP) Phase 3 samples (Auton et al., 2015) (see

key resources table, accessed July 22nd, 2019, only variants with PASS in the VCF variant filter

column). Most of the samples are from an ethnic group in an area (e.g. the ‘Yoruba of Ibadan,’

YRI, or the ‘Han Chinese from Beijing,’ CHB), so the sampling necessarily represents a simplifi-

cation of the diversity present in any locale (e.g. Beijing is home to several ethnic groups

beyond the Han Chinese). For each grouping, the 1KGP typically required each individual to

have at least three of four grandparents who identified themselves as members of the group

being sampled.

The 1KGP further defined five geographical ancestry groups: African (AFR), European (EUR),

South Asian (SAS), East Asian (EAS), and Admixed American (AMR). Differing from the 1KGP,

we include in the ‘Admixed in the Americas’ (AMR) regional grouping the following popula-

tions: ‘Americans of African Ancestry in SW USA’, ‘African-Caribbeans in Barbados (ACB)’, and

the ‘Utah Residents (CEPH) with Northern and Western European Ancestry’. We chose this

grouping because it is a more straightforward representation of current human geography.

See Supplementary file 1 for a full list of the 26 populations and the grouping into five

regions. We note challenges and caveats of these alternate decisions in the

Discussion. Also, Figure 5 and Figure 6—figure supplements 1–3 provide a complementary

view to Figure 3B, C and Figures 4 and 6, where the analysis is not based on the five group-

ings, but instead all 26 populations.
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Figure 2. A simple coding system to represent geographic distributions of variants. (A) Regional groupings of the

26 populations in the 1KGP Project. (B) Legend for minor allele frequency bins. (C) Two examples of how a verbal

description of an allele frequency map can be communicated equivalently with a five-letter code (yellow signifies

the major allele frequency, blue signifies the minor allele frequency in the pie charts).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Probability of not observing a variant at a given allele frequency and sample size in number

of individuals.
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features of human evolutionary history become apparent, and many misconceptions about human

differentiation can be addressed efficiently with this coarse approach (see Discussion). As any such

groupings are necessarily arbitrary, we also show results without using regional groupings to calcu-

late frequencies (see section ‘Finer-scale resolution of variant distributions’ below).

To represent the geographic distributions of alleles compactly, we give every variant a five-letter

code according to its allele frequencies across regions (Figure 2A). More precisely, for each bi-allelic

SNV, we identify the global rarer (minor) allele. Then for each region, we code the allele’s frequency as

‘u’, ‘R’, or ‘C’, based on whether the allele is ‘(u)ndetected,’ ‘(R)are,’ or ‘(C)ommon’ (Figure 2B). To dis-

tinguish between ‘rare’ and ‘common’ alleles, we used a threshold of 5% frequency. Finally, we concat-

enate the allele’s regional frequency codes in the fixed (and arbitrary) order: AFR, EUR, SAS, EAS, and

AMR. This procedure generates a ‘geographic distribution code’ for each variant. For example, the

code ‘CCCCC’ represents a variant that is common across every region, while ‘uuRuu’ represents a vari-

ant that is rare in South Asia and unobserved elsewhere (Figure 2C). To display the relative abundance

of codes within a set of variants, we use a vertical stack from the most abundant code at the bottom to

the least abundant at the top, with the height of each code proportional to its abundance, so that the

cumulative proportions of the rank-ordered codes are easily readable (Figure 3).

Results
Using the encoding scheme just described, we generated geographic distribution codes for all ~92

million biallelic SNVs in the 1000 Genomes dataset and display their relative proportions (Figure 3).

The distribution of codes is heavily concentrated, with 85% of variants falling into just eight codes

out of the 242 that are possible (35–1: three frequency categories in each of five regional groupings,

subtracting the code ‘UUUUU’ as each variant has been observed by definition). Of the top eight

codes, the top four codes represent rare variants that are localized in a single region. The fifth most

abundant code, ‘RuuuR’, represents rare variants found in Africa and the Admixed Americas (which

includes African American individuals, for example). The sixth code is another set of localized rare

variants (‘uRuuu’, i.e. variants rare in EUR). The seventh code is ‘CCCCC’ or ‘globally common var-

iants.’ The eighth most abundant category, ‘uRuuR’, represents rare variants found in Europe and

the Admixed Americas. Conspicuously infrequent in the distribution are variants that are common in

only one region outside of Africa and absent in others (e.g. ‘uCuuu’, ‘uuCuu’, ‘uuuCu’, ‘uuuuC’).

Instead, when a variant is found to be common (>5% allele frequency) in one population, the modal

pattern (37.3%) is that it is common across the five regions (‘CCCCC’). Further, 63% of variants com-

mon in at least one region are also globally widespread, in the sense of being found across all five

regions. This number rises to 82% for variants common in at least one region outside of Africa (Fig-

ure 3—figure supplements 1 and 2).

Singleton variants—alleles found in a single individual—are the most abundant type of variant in

human genetic data and are necessarily found in just one geographic region. To focus on the distri-

butions of non-singleton variants, we removed singletons and tallied again the relative abundance of

patterns (Figure 3C). Removing singletons reduces the absolute number of variants observed by

48.2% (91,784,637 vs. 44,290,364). Without singletons, we see more clearly the abundance of pat-

terns that have rare variants shared between two or more regions (codes with two ‘R’s and one ‘u’,

such as ‘uuRRu’ or ‘RRuuu’).

The scheme for geographic distribution codes requires a few choices. For comparison, we show

results using a 1%minor allele frequency threshold to define ‘common’ variants (Figure 3—figure sup-

plement 3A). We also produced results tracking the derived (younger) rather than the globally minor

allele (Figure 3—figure supplement 3C; for 96.6% of variants in the dataset with high-quality ancestral

allele calls [Box 1], the globally minor allele is the derived allele). Neither changing the frequency

threshold to 1% nor tracking the derived allele meaningfully affects the major patterns observed.

The patterns observed here are interpretable in light of some basic principles of population

genetics. Rare variants are typically the result of recent mutations (Mathieson and McVean, 2014;

Kiezun et al., 2013; Kimura and Ohta, 1973; Albers and McVean, 2020). Thus, we interpret the

localized rare variants (such as ‘Ruuuu’ or ‘uuuRu’) as mostly young mutations that have not had time

to spread geographically. The code ‘CCCCC’ (globally common variants), likely comprises mostly

older variants that arose in Africa and were spread globally during the Out-of-Africa migration and

other dispersal events (see Box 2). The appearance of rare variants shared between two or more
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regions (codes with two ‘R’s and three ‘u’s, such as ‘uuRRu’ or ‘RRuuu’) is likely the signature of

recent gene flow between those regions (Box 2; Platt et al., 2019; Mathieson and McVean, 2014;

Gutenkunst et al., 2009). In particular, the abundant ‘RuuuR’ and ‘uRuuR’ codes likely represent

young variants that are shared between the Admixed Americas and Africa (‘RuuuR’) or Europe

(‘uRuuR’) because of the population movements during the last 500 years that began with European
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Figure 3. A summary of geographic distributions in human SNVs. (A) We observe variants at ~3.1% of the

measurable sites in the reference human genome (GRCh38). A measurable site is one at which it is possible to

detect variation with current sequencing technologies (currently approximately 2.9 Gb out of 3.1 Gb in the human

genome; ). (B and C) The relative abundance of different geographic distributions for 1KGP variants, (B) including

singletons, and (C) excluding singletons. In panels B and C, the right-hand rectangles show the number and

percentage of variants that fall within the corresponding geographic code on the left-hand side; distribution

patterns are sorted by their abundance, from bottom-to-top. See Figure 2 for an explanation of the five-letter

‘u’, ’R’, ’C’ codes. The proportion of the genome with variants that have a given geographic distribution code can

be calculated from the data above (for example, with the ‘Ruuuu’ code, as 17% � 3.1% = 0.53%). The gray box

represents geographic distribution codes whose abundances are too rare to effectively display at the given figure

resolution.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Alternate versions of the GeoVar plots with an alternateallele frequency threshold and

tracking derived versus minor allele frequencies.

Figure supplement 2. Proportion of variants with specific GeoVar patterns conditional on an allele being common

in at least one continental group.

Figure supplement 3. Proportion of variants with specific GeoVar patterns conditional on an allele being

‘globally widespread’.

Figure supplement 4. GeoVar plots derived from simulations of two published models of human demography.
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colonization of the Americas and the subsequent slave trade from Africa. We interpret the 10th

most abundant code (‘CuuuR’, Figure 3B) as mostly variants that were lost in the Out-of-Africa bot-

tleneck and subsequently carried to the Americas by African ancestors. There is a relative absence of

variants that are common in only one region outside of Africa and absent across all others (e.g.

‘uCuuu’, ‘uuCuu’, ‘uuuCu’, ‘uuuuC’). These patterns are consistent with human populations having

not diverged deeply, in the sense that there has not been sufficient time for genetic drift to greatly

shift allele frequencies among them (Box 2). To help make this clear, consider the alternative sce-

nario—a model with very ancient population splits (Coon, 1962). In such a model, one would expect

many more variants to be common to one region and absent in others (‘Cuuuu’ or ‘uuuCu’ for exam-

ple, see Box 2). Overall, these results reflect a timescale of divergence consistent with the Recent-

African-Origin model of human evolution as well as subsequent gene flow among regions

(Cann et al., 1987; Stringer and Andrews, 1988; Thomson et al., 2000; Ramachandran et al.,

2005; Pickrell and Reich, 2014).

The variants that differ between a pair of individuals
While Figure 3 illustrates genetic variants found in a large, global sampling of human diversity, it does

not show what to expect for the variants that differ between pairs of individuals. Are the variants that

differ between two individuals more often geographically widespread or spatially localized?

To address this question, we considered the variants carried by pairs of individuals from the

whole-genome sequencing data of the Simons Genome Diversity Project (SGDP) (Mallick et al.,

2016; Figure 4). The SGDP sampled 300 individuals from 142 diverse populations. We use the

SGDP data to avoid ascertainment biases that might arise from looking at individuals within the

same dataset we use to measure allele frequencies. Figure 4 shows a representative subset with six
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B Geographic distributions of pairwise SNVs for pairs of individuals from the
Simons Genome Diversity Project
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Proportion of globally

widespread alleles: 63% 62% 54% 76%76%76%

Pairwise SNVs

Individual A carries at
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Individual A's genome

Figure 4. The geographic distributions of SNVs between pairs of individuals. (A) Definition of a pairwise SNV. (B)

The abundance of geographic distribution codes for different pairs of individuals from the SGDP dataset. Above

each plot, we show the total number of variants that differ between each individual (S) and the number that were

unobserved completely in the 1KGP data (SU). Across the bottom, we show the proportion of variants with globally

widespread alleles for each pair. We calculate this as the fraction of variants with no ‘u’ encodings over the total

number of variants (S). (Note: by doing so, we make the assumption that if a variant is not found in the 1KGP data

it is not globally widespread). For this analysis, as in Mallick et al., 2016, we include only autosomal biallelic SNVs

for variants that pass ‘filter level 1’.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional examples of geographic distribution codes for pairwise variants from different

pairs of sampled individuals in the SGDP.
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pairs chosen from three populations (Figure 4—figure supplement 1, shows a larger set of exam-

ples). For each pair, we see some variants that were undiscovered in the 1KGP data (denoted Su in

the figure). These account for 17–20% of each set of pairwise SNVs and are likely rare variants. We

see that the variants that differ between each pair of individuals are typically globally widespread

(i.e. codes with no ‘u’s, with proportions out of the total S varying from 54% to 76% for the pairs in

Figure 4). The observation of mostly globally common variants in pairwise comparisons may seem

counterintuitive considering the abundance of rare, localized variants overall. However, precisely

because rare variants are rare, they are not often carried by either individual in a pair. Instead, pairs

of individuals mostly differ because one of them carries a common variant that the other does not;

and as Figure 3 already showed, common variants in any single location are often common through-

out the world (also see Figure 5 and Figure 3—figure supplement 3).

From the example pairwise comparisons (Figure 4, and Figure 4—figure supplement 1), one

also observes evidence for higher diversity in Africa, which is typically interpreted in terms of founder

effects reducing diversity outside of Africa (Cann et al., 1987; Harpending and Eller, 2000;

Harpending and Rogers, 2000; Ramachandran et al., 2005; Prugnolle et al., 2005), although

other models, especially ones including substantial subsequent admixture, can also produce this pat-

tern (DeGiorgio et al., 2009; Pickrell and Reich, 2014). For example, the two Yoruba individuals

have more pairwise SNVs (S = 4,897,091) than the French/French (S = 3,525,519) and Han/Han

(S = 3,358,497) pairs. Pairs involving one or both of the sample Yoruba individuals have more var-

iants with alleles common in Africa and rare or absent elsewhere (e.g. ‘CuuuR’,’ RuuuR’). Finally, a
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Figure 5. A finer-scale summary of geographic distributions in human SNVs from the 1KGP. This plot is analogous

to Figure 3B but rather than calculating frequencies with the five regional groupings, we compute them within

each of the 26 1KGP populations. The total number of variants represented is the same as in Figure 3B

(S = 91,784,367). See Figure 2 for an explanation of the ‘u’,’R’,’C’ codes.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The geographic distribution of variants across all 26 populations

(for legend see Supplementary file 1) in the 1KGP both with singletons included (A) and removed (B).

Figure supplement 2. The geographic distribution of pairwise SNVs across pairs of individuals from the Simons

Genome Diversity Project using the full set of 26 populations from the 1KGP.

Figure supplement 3. The geographic distribution of SNVs on genotyping s using the full set of 26 populations

from the 1KGP.

Figure supplement 4. The minor allele frequencies of 300 variants in each of the 26 original population labels in

the 1KGP.
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Box 2. Theoretical modeling.

We can use theoretical models to estimate what our visualizations would look like for two pop-

ulations in simple contrasting cases of ’deep’ divergence, ’shallow’ divergence, and ’shallow’

divergence with gene flow. The shallow case is calibrated to be qualitatively consistent with

the Recent-African-Origin model with subsequent gene flow. The deep case mimics inaccurate

models of human evolution with very ancient population splits (e.g. Coon, 1962). For each

case, we computed the expected abundances of distribution codes in a simple model of popu-

lation divergence: two modern populations of N individuals each that diverged T generations

ago from a common population of N individuals (see Appendix 1 for information about this

calculation). We model gene flow by including recent admixture: individuals in Population A

derive an average fraction a of their ancestry from Population B and vice versa. This simplified

model neglects many of the complications of human population history, including population

growth, continuous historical migration, and natural selection, but it captures the key features

of common origins, divergence, and subsequent contact (see Figure 3—figure supplement 4

to compare with simulation results from more complex published models of human population

history).

In this model, the key control parameter is T=2N, the population-scaled divergence time.

Human pairwise nucleotide diversity (~1 � 10�3) and per-base-pair per-generation mutation

rate (~1.25 � 10�8) imply a Wright-Fisher effective population size of N = 2 � 104 individuals.

The Out-of-Africa divergence is estimated to have occurred approximately 60,000 years ago

(Nielsen et al., 2017). Assuming a 30-year generation time (Fenner, 2005) gives T=2N = 0.05.

We compare this scenario with T=2N = 0.5, corresponding to a deeper divergence of approxi-

mately 600,000 years ago.

Box 2—figure 1A shows the expected patterns in a sample of 100 individuals from each pop-

ulation for deep divergence (T=2N = 0.5), shallow divergence (T=2N = 0.05) without admixture,

and shallow divergence with admixture (a = 0.02). The shallow divergence model with or with-

out admixture reproduces the preponderance of ‘Ru’ and ‘CC’ mutations seen in the data,

while the deep divergence model shows many more ‘Cu’ and many fewer ‘CC’ mutations. The

case with admixture shows a slight increase in variant sharing (‘RR’ alleles increase from 1.3%

of variants to 4.2%; ‘RC’ and ‘CR’ alleles increase from 6% to 10%; ‘CC’ alleles comprise 23%

in both cases).

We can understand the relationship between the split time and geographic distribution abun-

dances heuristically as follows. During an interval of Dt generations, the frequency of a neutral

mutation starting at frequency f changes randomly by a typical amount Df ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1�fð Þ
2N

Dt

q

. Con-

sider a mutation that is at 25% frequency, that is, common, in the ancestral population at the

time of the split (Box 2—figure 1B). At time Dt=2N = 0.05 after the split, the frequency of the

mutation is likely to be in the interval (15%, 35%) in both populations and will be assigned the

code ‘CC’. On the other hand, by time Dt=2N = 0.5 after the split, the mutation has a signifi-

cant chance of going extinct in one or both populations (Box 2—figure 1C). Mutations that

go extinct in one population but not the other will typically be assigned a code ‘Cu’ or ‘uC’.

At the same time, new mutations are constantly entering the evolving populations. These new

mutations will be private to one population (‘Ru’ or ‘Cu’) and the overwhelming majority will

go extinct before reaching detectable frequencies. Conditional on non-extinction, the

expected frequency of a neutral mutation increases linearly with time (see Appendix 2). As a

result, the frequencies of new mutations since the split time Dt will mostly be contained in a tri-

angular envelope f<Dt=2N (Box 2—figure 1B). For recent divergence, the new mutations will

be assigned code ‘Ru’ or ‘uR’, while in deeply diverged populations they may be categorized

as ‘Cu’ or ‘uC’.
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more subtle, but expected, impact of founder effects is that the sample Yoruba/Yoruba comparison

is expected to have higher numbers of pairwise variants than the sample Yoruba/Han or Yoruba/

French comparison, which we observe.

The geographic distributions of variants typed on genotyping arrays
Targeted genotyping arrays are a cost-effective alternative to whole-genome sequencing. In contrast

to whole-genome sequencing, genotyping arrays use targeted probes to measure an individual’s

genotype only at preselected variant sites. The process of discovering and selecting these target

sites typically enriches the probe sets toward common variants (Clark et al., 2005), underrepresents

geographically localized variants (Albrechtsen et al., 2010; Lachance and Tishkoff, 2013), and can

affect genotype imputation and genetic risk prediction (Howie et al., 2012; Martin et al., 2017).

Figure 6 shows the geographic distributions of bi-allelic SNVs included on five popular array

products. In stark contrast with the SNVs identified by whole-genome sequencing (Figure 3B), a

large fraction of the variants on genotyping arrays are globally common. This is especially true for

the Affy6, Human Origins, and OmniExpress arrays, which were designed using polymorphisms

ascertained from a smaller number of sequenced individuals, and primarily capture more common

variants due to this ascertainment. The Omni2.5Exome and MEGA arrays in contrast exhibit many

more rare variants. In both these arrays, the second and third most abundant codes are ‘CuuuR’ and

‘RuuuR’ variants. The MEGA array was uniquely designed to capture rare variation in undersampled

continental groups, including African ancestries (Bien et al., 2016; Bien et al., 2019). Wojcik et al.,

2019 found that this design improved African and African American imputation accuracy, leading to

greater power to map population-specific disease risk.
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Box 2—figure 1. Allele frequency patterns depend on the time since population divergence and levels of

admixture.

(A) Expected geographic distribution code abundances in a sample of 100 diploid individuals

from each of two populations, for deep divergence (T=2N = 0.5, a = 0), recent divergence

without admixture (T=2N = 0.05, a = 0), and recent divergence with admixture (T=2N = 0.05, a

= 0.02). (B) Simulated allele frequency time series for mutations starting at 25% frequency

(blue) and new mutations entering the population since the split (orange). (C) The probability

of extinction of a mutation starting at 25% frequency (see Appendix 2).

Biddanda et al. eLife 2020;9:e60107. DOI: https://doi.org/10.7554/eLife.60107 9 of 23

Tools and resources Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.60107


Finer-scale resolution of variant distributions
While the use of five regional groupings above allows us to describe variant distributions compactly

with a five-digit encoding, the basic principle of grouping allele frequencies can be extended to

build a 26-digit encoding for the 1KGP variants (Figure 5, Figure 6—figure supplements 1–

3). Doing so with the set of ~92 million variants found in the 1KGP project (Figure 5), we find a
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Figure 6. Geographic distribution for variants found on genotyping array products. (A) Genotyping arrays consist

of probes for a fixed set of variants chosen during the design of the array product. (B) For each array product, we

extracted the genomic position of variants found on the array and kept variants that are also found within the

1KGP to highlight their geographic distributions. The arrays considered are the Affymetrix 6.0 (Affy6) genotyping

array, the Affymetrix Human Origins array (HumanOrigins), the Illumina HumanOmniExpress (OmniExpress) array,

the Illumina Omni2.5Exome, and the Illumina MEGA array.
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consistent pattern with Figure 3B, in that the majority of variants are seen to be rare and geographi-

cally localized (1 ‘R’, and the remainder ‘u’s), and when a variant is common in any one population, it

is typically common across the full set of populations (Figure 5, pattern with all ‘C’s). This view

reveals that the five-digit encodings with 1 ‘R’ and 4 ‘u’s are often due to variants that are rare even

within a single population. This is not unexpected given many of them are singletons. When we

remove singletons (Figure 5—figure supplement 1B), we again see more clearly rare allele sharing

indicative of recent gene flow, although at finer-scale resolution.

Discussion
By encoding the geographic distributions of the ~92 million biallelic SNVs in the 1KGP data and tally-

ing their abundances, we have provided a new visualization of human genetic diversity. We term our

figures ‘GeoVar’ plots as they help reveal the geographic distribution of sets of variants. GeoVar

plots can complement other methods of visualizing population structure, including: plots of pairwise

genetic distance, dimensionality-reduction approaches such as PCA, admixture proportion estimates

such as STRUCTURE, and explicitly spatial methods that use the sampling locations of individuals

(Guillot et al., 2009; Novembre and Peter, 2016; Bradburd and Ralph, 2019). These previously

developed methods help reveal population structure, infer genetic ancestry, and measure historical

migration patterns. However, they do a poor job of showing how alleles are distributed geographi-

cally. To minimize confusion about levels of differentiation among populations, researchers and edu-

cators can consider complementing PCA or STRUCTURE-like outputs with a variant-centric

visualization like the ones presented here. To that end, we provide source code to replicate our fig-

ures and to generate similar plots for other datasets (the ‘GeoVar’ software package; see key resour-

ces table).

A goal of our work was to build a visualization that can help correct common misconceptions

about human genetic variation. First, because many existing methods to describe population struc-

ture emphasize between-group or between-individual differentiation, they can convey a misleading

impression of ‘deep’ divergence between populations when it may not exist. Comparing Figure 1 to

outputs of models with ‘deep’ or ‘shallow’ divergence can help teach how patterns of human varia-

tion are consistent with shallow divergence and the Recent African Origins model (Box 2). Second,

because personal ancestry tests can identify ancestry to broad continental regions, it is possible to

incorrectly conclude human alleles are typically found exclusively in a single region and at high fre-

quency within that region (e.g. patterns such as ‘uuCuu’.) As our figures show, this is not the case. It

should be kept in mind that most fine-scale personal ancestry tests use genotyping arrays and com-

bine evidence from subtle fluctuations in the allele frequencies of many common variants

(Novembre and Peter, 2016). Finally, another related misconception is that two humans from differ-

ent regions of the world differ mainly due to alleles that are typical of each region. As we show in

Figure 4, most of the variants that differ between two individuals are variants with alleles that are

globally widespread. (Our awareness of these misconceptions comes from personal experiences in

teaching and outreach. However, there is a growing body of formal research on misconceptions

regarding human genetic variation, e.g., Bowling et al., 2008; Phelan et al., 2014; Hubbard, 2017;

Roth et al., 2020).

Our method requires computing allele frequencies within predefined groupings. Grouping and

labeling strategies vary between genetic studies and are determined by the goals and constraints of

a particular study (Race, Ethnicity, and Genetics Working Group, 2005; Panofsky and Bliss, 2017;

Mathieson and Scally, 2020). While we chose deliberately coarse grouping schemes to address the

misconceptions described above, the key facts we derive about human genetic variation are robust

and appear in finer-grained 26-population versions of the plot (Figure 5). We recommend that any

application of the GeoVar approach needs to be interpreted with the choice of groupings in mind.

The visualization method developed here is also useful for comparing the geographic distribu-

tions of different subsets of variants, (e.g. Figure 4, Figure 6). For example, when applied to the list

of variants targeted by a genotyping array (Figure 6), the approach quickly reveals the relative bal-

ance of common versus rare variants and the geographical patterns of those variants.

Interpreting the results of this visualization approach does have some caveats. First, we estimate

the frequency of alleles from samples of local populations. We expect that as sample sizes increase

many alleles called as unobserved ‘u’ will be reclassified as rare ‘R’. The average sample size across
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all of our geographic regions is approximately 500 individuals (AFR: 504, EUR: 404, SAS: 489, EAS:

504, AMR: 603). Assuming regions are internally well-mixed, we have ~80% power to detect alleles

with a frequency of ~0.2% in a region (Figure 2—figure supplement 1). For alleles with lower fre-

quencies, we would require larger sample sizes to ensure similar detection power (Figure 2—figure

supplement 1). An implication is that in large samples, we should observe more rare variant sharing.

Thus, we expect the figures here to underrepresent the levels of rare variant sharing between human

populations. In general, one must keep in mind that the GeoVar plot is a visualization of the joint

SFS for the sample, rather than for the complete population.

A second caveat is that our encoding groups a wide range of variants into the ‘(C)ommon’ cate-

gory (i.e. all variants where the frequency of the globally minor allele is greater than 5%). For some

applications, such as population screening for carriers, it may be enough to know that a variant falls

in the ‘rare’ or ‘common’ bins we have described, and more detail is inconsequential. For other

applications, the detailed fluctuations in allele frequency across populations are relevant—for exam-

ple, differences in allele frequencies at common variants (Figure 5—figure supplement 4) are regu-

larly used to infer patterns of population structure and relatedness (Li et al., 2008; Pickrell and

Pritchard, 2012; Patterson et al., 2012).

Third, one must interpret our results with the sampling design of the 1KGP study design in mind.

In particular, the 1KGP filtered for individuals of a single ethnicity within each locale. However, in our

current cosmopolitan world, the genetic diversity in any location or broad-based sampling project

will be considerably higher than implied by the geographic groupings above. For example, the UK

Biobank, while predominantly of European ancestry, has representation of individuals

with ancestry from each of the five regions used here (Bycroft et al., 2018). The 1KGP also sampled

South Asian ancestry from multiple locations outside of South Asia, and whether those individuals

show excess allele sharing due to recent admixture in those contexts is unclear. While we expect

overall similar patterns to those seen here using emerging alternative datasets (Bergström et al.,

2019), there may be subtle differences due to sampling and study design considerations.

Prior representations of human genetic variation data similar to the one presented here can be

found in Zietkiewicz et al., 1998, who showed patterns of absence/presence/fixation at seven sites

in the dys44 locus using a gray-scale, in a manner similar to Figure 1 here. Other previous examples

depict the proportion of variants with different geographic distributions resolved at the level of pres-

ence/absence (e.g. Rosenberg et al., 2002, Supp Figure 1 [pie chart]; Szpiech et al., 2008, Table 1,

[circular bar]; Rosenberg, 2011, Table 2, Figure 4 [pie chart] for microsatellites; and

Jakobsson et al., 2008, Figure 1A [Venn diagram] for SNPs, haplotypes and copy number variants).

Publications on recent whole-genome sequence data from humans have several related and relevant

figures for understanding the geographic distribution of variants (e.g. 1000 Genomes 2012,

Figure 2B; Auton et al., 2015, Figures 1A and 3A; Bergström et al., 2019, Figure 3A and Visual

Abstract). The GeoVar plots provide a complementary view to these previous figures. Specifically,

they provide more fine-grained representation than dichotomizations into private vs. shared variants

and assessments of sharing based on presence versus absence. The GeoVar plots also complement

plots of doubleton sharing or alternative normalized metrics that lose interpretability in terms of

absolute allele frequency patterns and the numbers of variants with particular patterns.

The visualizations provided here help reinforce the conclusions of a long history of empirical stud-

ies in human genetics (Lewontin, 1972; Ramachandran et al., 2005; Conrad et al., 2006; Li et al.,

2008; Auton et al., 2015; Mallick et al., 2016; Bergström et al., 2019). The results show how the

human population has an abundance of localized rare variants and broadly shared common variants,

with a paucity of private, locally common variants. Together these are footprints of the recent com-

mon ancestry of all human groups. As a consequence, human individuals most often differ from one

another due to common variants that are found across the globe. Finally, although not examined

explicitly above, the large abundance of rare variants observed here is another key feature of human

variation and a consequence of recent human population growth (Slatkin and Hudson, 1991;

Di Rienzo and Wilson, 1991; Keinan and Clark, 2012; Nelson et al., 2012; Tennessen et al.,

2012).

The well-established introgression of archaic hominids (e.g. Neandertals, Denisovans) into mod-

ern human populations (Wolf and Akey, 2018) is not apparent in the GeoVar plots we produced.

We believe that there are two broad reasons for this: (1) The clearest signal of archaic introgression

will come from sites where archaic hominids differed from modern humans, and we expect that
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these sites are only a very small fraction of variants found in humans today. The average human–

Neandertal and human–Denisovan sequence divergence are both less than 0.16% (using observa-

tions from Prüfer et al., 2014), and a recent study estimates that there are fewer than 70 Mb (2.3%

of the genome) of Neanderthal introgressed segments per individual for all individuals in the 1KGP

(Chen et al., 2020). (2) We do not expect SNVs from archaic introgression to be concentrated in a

single GeoVar category. For example, introgressed variants occupy a wide range of allele frequen-

cies (Bergström et al., 2019). Archaic introgression events are believed to be old: >30,000 years

ago, allowing time for substantial genetic drift and admixture among human populations

(Chen et al., 2020). Negative selection (Harris and Nielsen, 2016; Juric et al., 2016) and, in some

cases, strong positive selection Racimo et al., 2015 have also shaped the patterns of introgressed

SNVs. For these reasons, we expect low levels of archaic introgression not to create a striking visual

deviation in our GeoVar plots from the background patterns of a Recent African Origin model with

subsequent migration (Box 2). To highlight the contributions of archaic hominids to human variation,

more targeted approaches are needed (e.g. Green et al., 2010; Durand et al., 2011). Future work

could also naturally extend the approach here to include archaic sequence data.

The geographic distributions of genetic variants visualized here are relevant for a number of

applications, including studying geographically varying selection (Yi et al., 2010; Key et al., 2018),

human demographic history (Gutenkunst et al., 2009), and the genetics of disease risk. For

instance, due to ascertainment bias in arrays (Figure 6) and power considerations, common variants

are often found in genome-wide association studies of disease traits (Manolio et al., 2009). The pat-

terns shown above make it clear that most common variants are shared across geographic regions.

Indeed, many common variant associations replicate across populations (Marigorta and Navarro,

2013; though see Martin et al., 2017; Mostafavi et al., 2020 for complications). More recently,

due to increasing sample sizes and sequencing-based approaches, disease mapping studies are find-

ing more associations with rare variants (Bomba et al., 2017). As our work here emphasizes, rare

variants are likely to be geographically restricted, and so one can expect the rare variants found in

one population will not be useful for explaining trait variation in other populations, although they

may identify relevant biological pathways that are shared across populations.

A future direction for the work here would be to apply our approach to other classes of genetic

variants such as insertions, deletions, microsatellites, and structural variants. We note that in studies

with sample sizes similar to or smaller than the 1KGP, nearly all SNVs arise from single mutation

events. For other variants that arise from single mutation events (e.g. indels that arise from single

mutations), we expect similar patterns to those observed for SNVs here. In contrast, for highly muta-

ble loci we expect independently derived alleles will be distributed in disjoint regions of the world

due to multiple mutational origins (Ralph and Coop, 2010).

Another future direction would be to shift from visualizing patterns of allele sharing to the pat-

terns of sharing of ancestral lineages in coalescent genealogies. Recent advances in the inference of

genome-wide tree sequences (Kelleher et al., 2019; Speidel et al., 2019) and allele ages

(Albers and McVean, 2020) allow for quantitative summaries of ancestral lineage sharing. Such

quantities have a close relationship to the multi-population SFS properties that are studied here, yet

are more fundamental in a sense and less subject to the stochasticity of the mutation process. That

said, the conceptual simplicity of visualizing allele frequency patterns may be an advantage in educa-

tional settings.

Most importantly, future applications of the approach to humans will ideally use datasets that

include a greater sampling of the world’s genetic diversity (Bustamante et al., 2011; Popejoy and

Fullerton, 2016; Martin et al., 2017; Peterson et al., 2019). A related point is that the application

of our method to genotyping array variants (Figure 6) reinforces the importance of considering the

ancestry of study populations in genotype array design and selection (Peterson et al., 2019).

While we have focused here on human diversity at a global scale, GeoVar plots may be a useful

tool for population geneticists working at other scales and with other species. The input to the visu-

alization is simple: a table of allele frequencies in a set of populations. In the GeoVar software pack-

age, we provide python code for generating this table from a vcf file and a table of population

labels, but the user could generate the input from other data instead. For studying population struc-

ture, it is best to use an unbiased estimate of allele frequencies from, for example, whole-genome or

reduced-representation sequencing.
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Applied to new data sets, GeoVar may be used for exploratory data analysis, allowing users to

see some important features of population structure without fitting explicit models. For example,

hierarchical structure (Figure 5, rare variants shared within regional groupings) and recent admixture

(Figure 3, rare variants shared between AFR and AMR) show up as distinctive patterns in the plots.

Box 2 shows that when the cutoff frequency separating Rare from Common mutations is close to

the population split time (measured in units of 2N), an enrichment of ‘RU’ and ‘CC’ codes is

expected. For example, in populations that split 0.1 � N generations ago, mutations at local fre-

quencies below 0.1 will tend to be private and those at higher frequencies will tend to be shared. In

spatially distributed populations with limited dispersal, we expect that a similar relationship exists

between cutoff frequencies, variant sharing patterns, and the geographic distance between popula-

tions. In an exploratory setting, users could generate plots with multiple cutoff frequencies to reveal

varying levels of structure among populations. GeoVar plots may also serve as an informal good-

ness-of-fit check for parametric models of population history (as in Figure 3—figure supplement 2).

In such exploratory and model-checking applications, attention to sample sizes and their configura-

tion across sampling units is important, as larger sample sizes will allow the detection of more rare

variants (e.g. contrast Figure 3—figure supplement 2, panel A and B). For the application to

humans shown here, a preliminary approach to account for varying sample size did not substantially

change the results (results not shown); that said, developing such an approach more fully or taking

rarefaction approaches (Szpiech et al., 2008) may be essential for future applications with more

uneven sample sizes.

Overall, the visualizations produced here provide an interpretable way to depict geographic pat-

terns of human genetic variation. With personal genomic technologies and ancestry testing becom-

ing commonplace, there is increasing importance in fostering the understanding of human

population genetics. To this end, human genetics researchers must develop interpretable materials

on patterns of genetic variation for use in educational and outreach settings (Donovan et al., 2019).

The variant-centric approach detailed here complements existing visualizations of population struc-

ture, facilitating a clearer understanding of the major patterns of human genetic diversity.
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Appendix 1

Theoretical geographic distribution code abundances
The relative abundances of geographic distribution codes derive from human population history

(Box 2). Here, we use a simple population genetic model to develop intuition about the relationship

between the divergence time of a pair of populations and the expected two-letter code abundan-

ces. To isolate the effect of population divergence from other factors such as population growth, we

consider the simplest possible model of divergence: two constant-size populations of N individuals

descended from a single N-individual source population T generations ago (Box 2—figure 1A). We

incorporate recent contact between populations via a symmetric admixture coefficient a. Individuals

in Population 1 derive a fraction a of their ancestry from Population 2 and vice versa. Human popula-

tion history is much more complex than our model, but it captures the essential features of common

ancestry, subsequent isolation, and modern admixture.

Python source code implementing the calculation and producing Box 2—figure 1 is available in

the project’s Git repository (https://github.com/aabiddanda/geovar_rep_paper; Biddanda, 2020b;

copy archived at swh:1:rev:db3ca8faeecf8697973f803bc05c5a3d0a187145).

Wright-Fisher diffusion of allele frequencies

In our model, allele frequencies in the two source populations are initially identical because they

derive from the same source population. After the populations split, allele frequencies evolve inde-

pendently according to a Wright-Fisher diffusion with symmetric mutations at rate � new mutations

per population per generation. At time t ¼ T=2N generations after the split, the joint density of

mutations at frequency x1 in Population 1 and x2 in Population 2 is given by,

f ðt;x1;x2Þ ¼

Z

1

0

f ð0;x0Þpðt;x0;x1Þpðt;x0;x2Þdx0; (1)

where f ð0;x0Þ is the density of mutations at frequency x0 in the source population and pðt; �; �Þ is the

Wright-Fisher transition density function. Assuming that the source population was at mutation-drift

equilibrium, f ð0;x0Þ ¼pðx0Þ / ðx0ð1� x0ÞÞ
��1, the stationary measure of the Wright-Fisher diffusion.

We use the spectral decomposition of Song and Steinrücken, 2012 to represent the Wright-

Fisher transition density as an infinite sum of modified Jacobi polynomials, BiðxÞ:

pðt;x;yÞ ¼
X

¥

i¼0

e�Lit
pðyÞ

BiðxÞBiðyÞ

Bi;Bih i
; (2)

where the inner product g;hh i is given by
R

1

0
f ðxÞgðxÞpðxÞdx. The Jacobi polynomials are orthogonal

with respect to this inner product. That is, Bi;Bj


 �

¼ 0 for i 6¼ j. Substituting (2) into (1) and using

orthogonality, we have:

f ðt;x1;x2Þ ¼pðx1Þpðx2Þ
X

¥

i¼0

e�2Li t
Biðx1ÞBiðx2Þ

Bi;Bih i
: (3)

In practice, we can only compute partial sums on the right-hand side, which we can re-write as

f ðt;x1;x2Þ ¼pðx1Þpðx2Þ Smðx1;x2ÞþRmðx1;x2Þð Þ; (4)

where Sm is the partial sum of terms up to order m and Rm is the remainder, which represents the

error from truncating the series. We can control this error by choosing a large enough m (see

Numerical Integration.)

Sampling probabilities

The abundances of two-population distribution codes is a simple transformation of the cumulative

distribution function (CDF) of the joint allele counts ðK1;K2Þ. Conditioning on allele frequencies at

time t, but before admixture, the CDF is given by
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PfK1 � k1;K2 � k2g ¼

Z

1

0

Z

1

0

PfK1 � k1jx1;x2gPfK2 � k2jx1;x2gf ðt;x1;x2Þdx1dx2 (5)

For n randomly sampled haploid individuals from each population, and admixture coefficient a,

we have:

K1jx1;x2 ~Binomial n; ð1�aÞx1 þax2ð Þ;

K2jx1;x2 ~Binomial n; ð1�aÞx2 þax1ð Þ:

Writing PðkÞ
n ðx1;x2Þ for the binomial cumulative distribution function P Ki � kjx1;x2f g, and substitut-

ing (5) into (4) yields:

PfK1 � k1;K2 � k2g ¼ Pðk1Þ
n Pðk2Þ

n ;Sm

D E

þ Pðk1Þ
n Pðk2Þ

n ;Rm

D E

(6)

where the inner product now represents the double integral weighted by pðx1Þpðx2Þ.

Numerical integration

We compute the integrals in (6) by two-dimensional Gauss-Jacobi quadrature. The left argument of

the inner product is a polynomial of degree n in both x1 and x2. As a result, we can choose m ¼ 2n,

so that Pðk1Þ
n Pðk2Þ

n ;R2n


 �

¼ 0 due to the orthogonality of the Jacobi polynomials. Because S2n is also a

polynomial, the integrand is a polynomial of degree 4n. Thus, fixed-order tensor-product Gauss-

Jacobi quadrature is guaranteed to yield the exact integral with 4n2 evaluations of the integrand.
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Appendix 2

Extinction probability and conditional mean frequency
The extinction probability }ðp; tÞ, the probability that a mutation that was at frequency p at time t ¼

0 is extinct at time t ¼ T=2N, obeys the Kolmogorov backward equation Ewens, 2004 :

q

qt
}ðp; tÞ ¼

1

2
pð1� pÞ

q
2

qp2
}ðp; tÞ (7)

with boundary conditions

}ðp;0Þ ¼
1 if p=0

0 otherwise

�

(8)

}ð0; tÞ ¼ 1 (9)

}ð1; tÞ ¼ 0 (10)

For short times and rare alleles (i.e. t;p� 1), we can use the approximation pð1� pÞ»p, to get a

simpler diffusion equation:

q

qt
}¼

1

2
p
q
2

qp2
} (11)

with modified boundary conditions

}ðp;0Þ ¼
1 if p=0

0 otherwise

�

(12)

}ð0; tÞ ¼ 1 (13)

lim
p!¥

}ðp; tÞ ¼ 0 (14)

Because we are neglecting the ð1� pÞ term, fixation is not possible in this approximation, and it is

natural to move the upper boundary condition from p¼ 1 to p!¥. (This approximation is equivalent

to replacing the Wright-Fisher diffusion with a continuous-state critical branching process, which is

guaranteed to go extinct for all finite sizes). Accordingly, we expect the approximation to break

down when the minor allele has a substantial probability of fixation.

We can solve (11) in closed form to find the time-dependent extinction probability,

}ðp; tÞ» exp �
2p

t

� �

; (15)

For t� 2p, this probability is exponentially small, while for t>2p it behaves like 1� 2p=t (Box 2—

figure 1C).

We can use (15) to find the expected frequency of a new mutation conditional on its survival to

time t. By the law of total probability, we have

E XðtÞjXðtÞ>0½ � ¼
E½XðtÞ�

P½XðtÞ>0�
¼

1=2N

1�}ð1=2N; tÞ
; (16)

where in the last equality we used the fact that for a new neutral mutation

E½XðtÞ� ¼ p¼ 1=2N. Thus, to leading order in 1=N, we have E½XðtÞjXðtÞ>0�~ t=2.
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Appendix 3

Appendix 3—key resources table

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Other 1000 Genomes
High-Coverage
Data (1 KG)

https://doi.org/
10.1093/nar/
gkz836

RRID:SCR_
006828

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/working/
20190425_NYGC_GATK/

Other Simons Genome
Diversity
Project Data
(SGDP)

https://doi.org/
10.1038/
nature18964

https://reichdata.hms.harvard.edu/pub/datasets/
sgdp/

Other Ancestral allele
calls

https://doi.org/
10.1093/nar/
gkz966

RRID:SCR_
002344

ftp.ensembl.org/pub/release-90/fasta/ancestral_
alleles/homo_sapiens_ ancestor_GRCh38_e86.tar.gz

Other GrCH38
Genome Masks

https://doi.org/
10.1093/nar/
gkz836

RRID:SCR_
006828

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000_genomes_project/working/
20160622_genome_mask_GRCh38/

Commercial
assay or kit

Human Origins
Array;
Human Origins

other https://sec-assets.thermofisher.com/TFS-Assets/
LSG/Support-Files/Axiom_GW_%20HuOrigin.na35.
annot.csv.zip

Commercial
assay or kit

Affymetrix
GenomeWide
6.0 Array (Affy6)

other http://www.affymetrix.com/Auth/analysis/
downloads/na35/genotyping/GenomeWideSNP_6.
na35.annot.csv.zip

Commercial
assay or kit

Illumina MEGA
Array (MEGA)

other ftp://webdata2:webdata2@ussd-ftp.illumina.com/
downloads/productfiles/multiethnic-amr-afr-8/v1-0/
multi-ethnic-amr-afr-8-v1-0-a1-manifest-file-csv.zip

Commercial
assay or kit

Illumina Human
Omni
Express Array
(OmniExpress)

other ftp://ussd-ftp.illumina.com/Downloads/
ProductFiles/HumanOmniExpress-24/v1-0/
HumanOmniExpress-24-v1-0-B.csv

Commercial
assay or kit

Illumina
Omni2.5Exome
Array
(Omni2.5Exome)

other ftp://ussd-ftp.illumina.com/Downloads/
ProductFiles/HumanOmni2-5Exome-8/Product_
Files_v1-1/HumanOmni2-5Exome-8-v1-1-A.csv

Other Reproducible
analysis
pipeline for this
paper

This paper https://github.com/aabiddanda/geovar_rep_
paper; Biddanda, 2020a (copy archived at swh:1:
rev:db3ca8faeecf8697973f803bc05c5a3d0a187145)

Software,
algorithm

GeoVar software This paper https://aabiddanda.github.io/geovar/
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